正誤表

<table>
<thead>
<tr>
<th>項</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.xi</td>
<td>以下の文献は絶版 ,あるいは入手困難な参考文献である</td>
<td>(ゴチック)</td>
</tr>
<tr>
<td>p.xiv</td>
<td>のバリエーションによって ,方程式や不等式になるものもある。</td>
<td>のバリエーションによって ,方程式や不等式になるものもある。</td>
</tr>
<tr>
<td>p.xv</td>
<td>ミの CG 制作にかかわった</td>
<td>ミの CG 制作をご提供いただきました</td>
</tr>
<tr>
<td>P2</td>
<td>を yl は</td>
<td>yl は</td>
</tr>
<tr>
<td>P3</td>
<td>意味である。 fuction をいう言葉を □ 出てくる。</td>
<td>意味である。 Fuction という言葉を □ 出てくる。</td>
</tr>
<tr>
<td>P.5</td>
<td>例題</td>
<td>x 秒後</td>
</tr>
<tr>
<td>P12</td>
<td>上</td>
<td>して A2 から □ , 上のようなグラフを</td>
</tr>
<tr>
<td></td>
<td>P13</td>
<td>(脚注)</td>
</tr>
<tr>
<td></td>
<td>P14</td>
<td>(脚注)</td>
</tr>
<tr>
<td></td>
<td>P18</td>
<td>表 2.6 a>0 のとき a<0 のとき</td>
</tr>
<tr>
<td></td>
<td>P20</td>
<td>y = a (x + b)² - b² - 4ac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y = a (x - 頂点のx座標)² - 頂点のy座標</td>
</tr>
<tr>
<td>P21</td>
<td>2 □ 20 + 2 □ 40 = 120</td>
<td>2 □ 20 + 2 □ 40 = 120</td>
</tr>
<tr>
<td>P22</td>
<td>表 2.7</td>
<td>表 2.7</td>
</tr>
<tr>
<td></td>
<td>重力加速度</td>
<td>重力加速度</td>
</tr>
<tr>
<td></td>
<td>東京 9.797</td>
<td>東京 9.797*</td>
</tr>
<tr>
<td></td>
<td>札幌 9.804</td>
<td>札幌 9.804*</td>
</tr>
<tr>
<td></td>
<td>那覇 9.790</td>
<td>那覇 9.790*</td>
</tr>
<tr>
<td></td>
<td>ヘルシンキ 9.819</td>
<td>ヘルシンキ 9.819</td>
</tr>
<tr>
<td></td>
<td>パナマ 9.782</td>
<td>パナマ 9.782</td>
</tr>
<tr>
<td></td>
<td>南極（昭和基地）9.825</td>
<td>南極（昭和基地）9.825</td>
</tr>
<tr>
<td></td>
<td>「理科年表 2005」</td>
<td>「理科年表 2005」 *は実測値の概数 , 他は緯度からの計算値の概数。</td>
</tr>
<tr>
<td>ページ</td>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>
| P22 下 | 例題 | 【解】
| 斜線部 | ぬりつぶし部 |
| P23 上 | 問1 | 問1 落下運動の一般化
| 上の例題 | 前の例題 |
| 【解】 | 【解】 |
| 斜線部 | ぬりつぶし部 |
| P23 下 | 例題 | 問2 投げ上げ運動の一般化
| 【解】 | ぬりつぶし部 |
| 斜線部 | |

P26 図 1.3.1 (差し替え)

P36 図 1.3.23 三角形と長方形

P36 図 1.3.28 三角形と長方形

P40 例題【解】

| 図 1.1.3 のように |
| H から直線 CEG へ垂線を |

P40 図 2.1.3 (図の差し替え)

| 図の差し替え |
| 図の差し替え |

图1 が図2のように

| 図2.1.3 のように |
| H から直線 CEG の延長上へ垂線を |

图3 が図4のように

<p>| 図の差し替え |
| 図の差し替え |</p>
<table>
<thead>
<tr>
<th>P47 上</th>
<th>$10^{-n} = \frac{1 \times 10 \times 10 \times \cdots \times 10}{n}$ 倍</th>
<th>$10^{-n} = \frac{1}{10 \div 10 \div \cdots \div 10}$ 倍</th>
</tr>
</thead>
<tbody>
<tr>
<td>P47 中</td>
<td><<注>>工学</td>
<td><<注>>工学や物理学</td>
</tr>
</tbody>
</table>
| P47 中 | 脚注に右文追加 | <<One Point Advice>>
コンピュータ分野ではキロは大文字のKでなく |
| P48 中 | 虚数単位 | (ゴチック) |
| P54 | 図 2.1.15 | (差し替え) |

![3D图形](image)

| P59 | <<One Point Advice>>
列の重要である | <<One Point Advice>>
列の区別が重要である |
|---|---|---|
| P67 上 | 練習 2.4
(4) | (4)の問題を削除 |
P67 上	因数分解	(ゴチック)
P70	練習 2.7(4) $x^2-10xy-24y^2$	練習 2.7(4) $x^2-10xy+24y^2$
P75 下	微分積分を行うに終わる。	微分積分を行うときに終わる。
P78 中下	$S : S = 1 : k^2$	
S, S' | $S : S' = 1 : k^2$
S, S' |
<p>| P79 (上から6行目) | □成り立つことを示せ。 | □成り立つことを示すことができる。 |
| P79 下 | 図 2.3.5 がないので，脚注にいる。 | (図 2.3.5 追加) |</p>
<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>P79 下</td>
<td>P の縦,横,高さの直方体</td>
</tr>
<tr>
<td>P81</td>
<td>よって x=1,または0 よって x-1=0,または0</td>
</tr>
<tr>
<td>P82</td>
<td>練習 3.3(3) (あとにつづけて) 3次式の応用として4次方程式を扱える</td>
</tr>
<tr>
<td>P82 下</td>
<td>(例題【解】最終行) 0<x<6 であるから, x=2 となる。 答 四隅から2cm四方の正方形を切り取る</td>
</tr>
<tr>
<td>P83</td>
<td>(下から2行目) x=1 x-1=0</td>
</tr>
<tr>
<td>P87</td>
<td>封表紙図 図版差し替え</td>
</tr>
<tr>
<td>P111</td>
<td>図 3.132 りんごの山の各段 図 3.132 k(k+1)の和</td>
</tr>
<tr>
<td>p116</td>
<td>【解】 □ 4,8,6 □ 【解】 □ 4,8,16 □</td>
</tr>
<tr>
<td>P154</td>
<td>(塗りつぶし部分内) * (全部とする)</td>
</tr>
</tbody>
</table>
| P166 | 問2
\[
\int_0^a x^3 dx \int_0^a x^2 dx \int_0^a x^1 dx \int_0^a x^0 dx \text{の値を求めよ。}
\]
<p>| P195 | (表1.2 左列) (表1.2 左列) |</p>
<table>
<thead>
<tr>
<th>表</th>
<th>0</th>
<th>1</th>
<th>1/2</th>
<th>1/2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P196</td>
<td>(すべての) a</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P196</td>
<td>(脚注） a の 一つある n 乘根はいつも。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a の n 乗根はいつも。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P198</td>
<td>いたものを， □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>いたが， □</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P198</td>
<td>(例題) □ 10 のべき乗でおよそのべき乗で □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) □ 10 の 3 乗に等しい □</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(例題) □ 10 のべき乗(およそのべき乗)で □</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) □ 10 の 3 乗にほぼ等しい □</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P198</td>
<td>【解】</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P199</td>
<td>$2^{10} = 1024 \equiv 10^3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(2^{10})^{1/10} \equiv (10^3)^{1/10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\therefore 2 \equiv 10^{0.3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\equiv, \approx, ~ の記号をすべて変更</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ にすること</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P201</td>
<td>表 1.6</td>
<td>表 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P201</td>
<td>$100.5 = \sqrt{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$10^{0.5} = \sqrt{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P202</td>
<td>(問 1 のすぐした)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“10 が100 となる”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“$10^0 = 100$ となる”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P204</td>
<td>(3)log3 は，34=81 から □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)log3 は，$3^4=81$ から □</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P204</td>
<td><<One Point Advice>></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P202 と重複しているのでカット</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P207</td>
<td>底を 8 から 2 に変える場合，$\log_8 x$ の値は $\log_2 x$ の値に 1/3 かければよい。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>底を 8 から 2 に変える場合，$\log_8 x$ の値は $\log_2 x$ の値を 3 で割ればよい。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P208</td>
<td>練習 2.6 (解答が入っている。しかも，(4)の底も違っている。)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)log, $1024 = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)log, $8 = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)log, $128 = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)log, $243 = 6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P212</td>
<td>表 1.11 ^n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (上付き)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P213</td>
<td>(下)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5
<table>
<thead>
<tr>
<th>行</th>
<th>内容</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>P214</td>
<td>(1) (\log_{34}) (2) (\log_{49}) (3) (\log_{35}) (4) (\log_{52})</td>
<td>(1) (\log_{4}) (2) (\log_{9}) (3) (\log_{5}) (4) (\log_{12})</td>
</tr>
<tr>
<td>P226</td>
<td>(\sin \theta = a \frac{\sin x}{1+b} + \frac{\sin x}{1+b}) (\cdots)</td>
<td>(\sin \theta = a \frac{\sin x}{1+b} + \frac{\sin x}{1+b}) (\cdots)</td>
</tr>
<tr>
<td>P230</td>
<td>(表 2.1)</td>
<td>(表 2.1 を p229 へ移動)</td>
</tr>
<tr>
<td>P260</td>
<td>指導書</td>
<td>指導資料</td>
</tr>
<tr>
<td>P277</td>
<td>(練習 2.6) (1)和:−3/2 積:2</td>
<td></td>
</tr>
<tr>
<td>P278</td>
<td>(練習 3.1) □-0.5x+5<0 □y<0 となる □ □-0.5x+5 □0 □y □0 となる □</td>
<td></td>
</tr>
<tr>
<td>P281</td>
<td>練習 2.7(4) (x−12)(x+2)</td>
<td>(x−4y)(x−6y)</td>
</tr>
<tr>
<td>P303</td>
<td>(第 1 章章末問題 □) (PS = 5 \cdot \frac{x}{4}) • (PQ = (4-x) \cdot \frac{3}{5}) (y = 5 \cdot \frac{x}{4} (4-x) \cdot \frac{3}{5} = -\frac{3}{4} x^2 + 3x)</td>
<td>(PS = 5 \cdot \frac{x}{4}) • (PQ = (4-x) \cdot \frac{3}{5}) (y = 5 \cdot \frac{x}{4} (4-x) \cdot \frac{3}{5} = -\frac{3}{4} x^2 + 3x)</td>
</tr>
</tbody>
</table>
著者紹介
江見圭司（えみけいじ）
現職 京都情報大学院大学助教授。京都コンピュータ学院 e-ラーニング開発室担当。博士（人間・環境学）。
略歴 1968 年生まれ。灘高校卒業、京都大学理学部卒業、同大学院理学研究科化学専攻修士修了、人間・環境学研究科博士修了後(1998 年)、専修学校京都コンピュータ学院や佛教大学などの非常勤講師を経て、2001 年から金沢工業大学工学部情報工学科講師。2004 年 4 月から金沢工業大学情報フロンティア学部メディア情報学科講師。2006 年 4 月から現職。
主として第 2 章、第 5 章、第 6 章執筆。

江見善一（えみぜんいち）
現職 京朋社代表。京都産業大学、京都女子大学で非常勤講師（情報リテラシー、関係データベース、C G などの科目）、専修学校京都コンピュータ学院でも非常勤講師（コンピュータ科学概論の科目）
略歴 1939 年生まれ。大阪府立北野高校卒業、京都大学工学部機械工学、同大学院工学研究科修士修了後、ダイハツ工業入社。その後、中古車販売、工務店経営を経て現職。
主として第 1 章執筆。図版制作。

矢島彰（やじまあきら）
現職 大阪国際大学経営情報学部講師。博士（理学）。
略歴 1970 年生まれ。麻布高校卒業後、京都大学理学部卒業、同大学院理学研究科地球惑星科学専攻修士修了、同博士修了後、京都女子大学、専修学校京都コンピュータ学院などの非常勤講師を経て、2003 年から現職。
主として第 3 章、第 4 章執筆。